

일반대학원 물리학과 교육과정시행세칙

시행 : 2026.03.01

제1조(목적) ① 이 시행세칙은 상기 대학원 학과의 학위 취득을 위한 세부요건을 정함을 목적으로 한다.
② 학위를 취득하고자 하는 자는 학위취득에 관하여 대학원학칙, 대학원학칙시행세칙, 대학원내규에서 정한 사항 및 본 시행세칙에서 정한 사항을 모두 충족하여야 한다.

제2조(교육목표) ① 학과 교육목표는 다음과 같다.

1. 자연현상의 원리를 이해하고 설명하는데 필요한 전문 지식 습득.
2. 전공에 대한 전문적 지식을 기반으로 물리 분야의 국제적이고 창의적인 인력 양성.
3. 자연과학과 인류의 삶 전반에 걸쳐 기여할 수 있는 전문인 양성.
4. 물리학 기반 연구와 교육을 통한 산학협동연구 역량 강화.

제3조(진로취업분야) ① 학과의 진로취업분야는 다음과 같다.

1. 국책연구소
2. 국내외 기업
3. 국내외 고등교육 기관
4. 물리 기반 응용 분야 창업

제4조(교육과정기본구조) ① 물리학과를 졸업(수료)하고자 하는 자는 [표1] 교육과정기본구조표 및 <별표1>교육과정 편성표에 명시된 학점을 이수하여야 한다.

② <별표1> 교육과정 편성표에 포함되지 않은 대학원 타학과 개설과목은 [표1]의 타학과 인정학점의 범위 내에서 전공선택으로 인정한다. 단, 타학과 동일전공에서 개설한 양자정보 관련 전공과목을 이수한 경우에는 본 학과 양자정보과학전공의 전공학점으로 인정할 수 있다.

③ 선수학점은 졸업학점에 포함되지 않는다.

[표1] 교육과정기본구조표

학과명 (전공명)	과정	졸업(수료)학점				타학과 인정학점
		전공필수	전공선택	공통과목	계	
물리학과 (물리전공, 양자정보과학전공)	석사과정	-	24학점	-	24학점	6학점
	박사과정	-	36학점	-	36학점	6학점
	석박사통합과정	-	60학점	-	60학점	6학점

제5조(교과과정) ① 교과과정은 다음과 같다.

[표2] 전공과목 편성표

과정	이수 구분	과목명		과목수
석사 박사	전공 선택	공통 (물리전공, 양자정보 과학전공)	고전역학(3), 고전전자기학1(3), 고전전자기학2(3), 양자역학(3), 통계역학1(3), 통계역학2(3), 고체물리(3), 기초양자장론(3), 일반상대론(3), 끈이론1(3), 끈이론2(3), 입자물리특론1(3), 입자물리특론2(3), 입자물리특수연구1(3), 입자물리특수연구2(3), 고급통계물리학(3), 통계열역학특론(3), 양자정보(3), 첨단데이터컴퓨팅물리학(3), 전자구조계산방법론1(3), 전자구조계산방법론2(3), 고체물리특론1(3), 고체물리특론2(3), 고체물리특론3(3), 고체물리특론4(3), 자성체물리학(3), 응용물리특론1(3), 응용물리특론2(3), 타원편광해석법(3), 타원해석법응용(3), 전자물리학1(3), 전자물리학2(3), 나노물성학(3), 반도체물리학(3),	34
		양자정보 과학전공	양자정보과학1(3), 양자정보과학2(3), 양자컴퓨터및시뮬레이션1, 양자컴퓨터및시뮬레이션2, 양자센싱및측정1, 양자센싱및측정2, 양자통신및암호1, 양자통신및암호2, 양자정보실험1, 양자정보실험2, 고급양자알고리즘, 고급양자정보이론, 양자정보연구과제설계1, 양자정보연구과제설계2, 양자정보연구인턴, 논문지도1, 논문지도2	17
석사	전공 선택	공통 (물리전공, 양자정보 과학전공)	석사논문연구1, 석사논문연구2	2
박사	전공 선택	공통 (물리전공, 양자정보 과학전공)	박사논문연구1, 박사논문연구2, 박사논문연구3, 박사논문연구4	4

② 교육과정 편성표는 <별표1>과 같다.

③ 교과목 해설서는 <별표2>와 같다.

제6조(선수과목) ① 다음에 해당하는 자는 아래와 같이 선수과목을 이수하여야 한다.

1. 대상자 : 하위 학위과정의 학과(전공)과 상이한 학과(전공)에 입학 한 자
2. 선수과목 이수학점 : 석사과정 9 학점, 박사과정 및 석박사통합과정 12학점
3. 선수과목 목록 : [표3] 선수과목 목록표 참조

[표3] 선수과목 목록표

번호	과목명	개설학과	학점	인정이수구분	대상학위과정
1	물리학 및 실험1	물리학과	3	선수과목	석사, 박사
2	물리학 및 실험2	물리학과	3	선수과목	석사, 박사
3	수리물리학1	물리학과	3	선수과목	석사, 박사
4	수리물리학2	물리학과	3	선수과목	박사

※ 위에 지정되지 않은 교과목의 경우에는 학과 회의를 거쳐 선수과목으로 인정받을 수 있다.

② 입학 전 하위 학위과정에서 이수한 과목 중 학점인정을 신청하여 학위지도교수 및 학과장의 확인을 거쳐 해당 부서장의 승인을 받은 경우 선수학점으로 인정받을 수 있다.

제7조(타학과 및 타대학원 과목 인정) ① 학위지도교수 및 학과장의 승인을 받아 본 대학원 소속 타 학과의 전공과목을 수강할 수 있으며, [표1] 타학과 인정학점의 범위 내에서 전공선택으로 인정받을 수 있다. 단, KHU/Ecole Polytechnique 복수학위과정생의 경우 예외로, 정보디스플레이학과에서 취득한 학점에 대해 수료 및 졸업에 필요한 학점으로 모두 인정받을 수 있다.

② 전과로 학과 및 전공이 변경된 경우에는 학과장의 승인을 거쳐 [표1] 타학과 인정학점의 범위 내에서 전공선택으로 인정받을 수 있다.

③ 타학과 과목 인정 범위를 초과한 경우에는 학과 회의를 거쳐 인정받을 수 있다.

제8조(대학원 공통과목 이수)

① 대학원에서 전체 대학원생을 대상으로 “공통과목”(융합교육강좌)을 수강하는 경우 지도교수 및 학과장의 승인을 거쳐 수료(졸업)학점으로 인정받을 수 있다.

제9조(수료)

- ① 제4조에 해당하는 과정을 이수하고 대학원 학칙, 내규 등 상위규정에서 제시된 모든 요건을 충족한 자에 한하여 수료를 인정한다.
- ② 선수학점 이수 대상자는 규정된 선수학점을 취득하여야 한다. 단 선수학점은 수료학점에 포함되지 않는다.
- ③ 타학과 및 공통과목으로 인정되는 학점은 위의 각 조에서 규정한 학점만을 수료학점으로 인정한다.
- ④ 양자정보과학전공 과정을 수료하고자 하는 학생은 아래 사항을 만족하여야 한다.
 - 석사과정: 양자정보과학 분야에서 2개 과목 이상을 수강하여야 한다.
 - 박사과정: 양자정보과학 분야에서 3개 과목 이상을 수강하여야 한다.
 - 석박사통합과정: 양자정보과학 분야에서 5개 과목 이상을 이수하여야 한다.

지도교수와 학과장의 승인을 받아 국내외 타대학교 대학원에서 학점교류로 이수한 양자정보과학 관련 과목에 대해서 양자정보과학 분야 과목을 수강한 것으로 인정받을 수 있다.

제10조(졸업) 제9조와 학위자격시험, 학위청구논문, 논문게재요건 등 졸업요건을 모두 충족한 자에 한하여 졸업을 인정한다.

제11조(학위자격시험) ① 학위청구논문 제출을 신청하기 위해서는 학위자격시험에 합격하여야 한다.

- ② 학위자격시험은 공개발표와 종합시험 2 과목으로 구성되며 모든 과목에서 합격하여야 한다.
- ③ 학위자격시험(공개발표)은 연구계획발표로 한다.
 - 석사 및 박사과정의 경우 12학점 취득 이후, 석박사통합과정의 경우 36학점 취득 이후부터 응시할 수 있으며, 박사 및 석박사통합과정의 경우 학위자격시험(공개발표) 합격한 학기를 포함하여 2개 학기까지는 학위청구논문을 제출할 수 없다.
 - 심사위원은 지도교수가 위촉하며 석사과정의 경우 2인, 박사 및 석박사통합과정의 경우 3인 이상으로 한다.
 - KHU/Ecole Polytechnique 복수학위과정생의 경우 공개발표시험을 면제한다.
- ④ 학위자격시험(종합시험)은 전공능력시험으로 한다.
 - 종합시험의 세부과목은 고전역학, 전자기학, 양자역학, 통계역학이며 모든 과목을 합격하여야 한다.
 - 종합시험은 4인 이상의 소속학과 전임교수로 이루어진 위원회에서 시행한다.
 - <고전역학>에서 A- 이상의 학점을 받은 경우 종합시험 세부과목 고전역학에 합격한 것으로 간주한다.
 - <고전전자기학1> 또는 <고전전자기학2>에서 A- 이상의 학점을 받은 경우 종합시험 세부과목 전자기학에 합격한 것으로 간주한다.
 - <양자역학>에서 A- 이상의 학점을 받은 경우 종합시험 세부과목 양자역학에 합격한 것으로 간주한다.
 - <통계역학1> 또는 <통계역학2>에서 A- 이상의 학점을 받은 경우 종합시험 세부과목 통계역학에 합격한 것으로 간주한다.
 - 박사과정 학생 중 본교 대학원 물리학과에서 석사 학위를 취득한 경우 학위자격시험(종합시험)을 면제한다.

제12조(논문게재요건) ① 학위취득을 위해서는 학위청구논문과 별도로 논문게재실적을 제출하여야 하며, 학위청구논문 심사를 통과한 이후 학과 내 공개 발표를 하여야 한다.

- ② 논문게재요건은 대학원 내규를 따른다.

[부칙1]

제1조(시행일) 본 세칙은 2014년 3월 1일부터 시행한다.

[부칙2]

제1조(시행일) 본 세칙은 2016년 3월 1일부터 시행한다. (제7조 본 대학원 소속 타학과 과목이수 변경, 제8조 공통과목 이수 삭제, 별표1 수정, 별표2 일부과목 영문명 및 개요 수정)

제2조(경과조치) 본 세칙 시행일 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 새로운 교육과정을 적용 받을 수 있다.

[부칙3]

제1조(시행일) 본 세칙은 2017년 3월 1일부터 시행한다. (제7조 본 대학원 소속 타학과 과목 이수 내용 변경)

제2조(경과조치) 본 세칙 시행일 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 새로운 교육과정을 적용 받을 수 있다.

[부칙4]

제1조(시행일) 본 세칙은 2018년 3월 1일부터 시행한다.

제2조(경과조치) 본 세칙 시행일 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 새로운 교육과정을 적용 받을 수 있다.

[부칙5]

제1조(시행일) 본 세칙은 2021년 3월 1일부터 시행되며 2020학년도 신입생부터 적용한다.

제2조(경과조치) 2020학년도 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 새로운 교육과정을 적용 받을 수 있다.

[부칙6]

제1조(시행일) 본 세칙은 2022년 3월 1일부터 시행한다.

제2조(경과조치)

가. 2022학년도 교육과정시행세칙의 "학위자격시험은 2022학년도 이전 입학생에게도 적용할 수 있다.

나. 학위자격시험은 공개발표 또는 논문제출자격시험을 대체할 수 있다

다. 학위자격시험 대체자는 기 취득한 공개발표 또는 논문제출자격시험을 인정하지 않는다

[부칙7]

제1조(시행일) 본 세칙은 2023년 9월 1일부터 시행한다.

제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 학과 회의를 거쳐 학과장 승인하에 새로운 교육과정을 적용 받을 수 있다.

[부칙8]

제1조(시행일) 본 세칙은 2024년 3월 1일부터 시행한다.

제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 학과 회의를 거쳐 학과장 승인하에 새로운 교육과정을 적용 받을 수 있다.

[부칙9]

제1조(시행일) 본 세칙은 2025년 3월 1일부터 시행한다.

제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 학과 회의를 거쳐 학과장 승인하에 새로운 교육과정을 적용 받을 수 있다.

[부칙10]

제1조(시행일) 본 세칙은 2026년 3월 1일부터 시행한다.

제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생은 구 해당학과의 교육과정을 따르되 필요한 경우 학과 회의를 거쳐 학과장 승인하에 새로운 교육과정을 적용 받을 수 있다.

〈별표1〉 교육과정 편성표

57	전공선택	PHYS8004	박사논문연구4	3		<input type="radio"/>	<input type="radio"/>				<input type="radio"/>	
			PhD Dissertation Research 4									

<별표2> 교과목 해설

1. 고전전자기학1 (Classical Electromagnetism 1)

퍼텐셜에 대한 경계치 문제, 물질 내에서의 전기장과 자기장, Maxwell 방정식과 Jefimenko 방정식, gauge 변환 등을 다룬다.

Topics include boundary-value problems of potential, electric and magnetic properties of matter, Maxwell's and Jefimenko's equations, gauge transformation

2. 고전역학 (Classical Mechanics)

고전 역학의 기본 원리인 Newton 역학, Lagrange 역학, Hamilton 역학 등을 공부하고 canonical transformation, Hamilton–Jacobi theory 등도 다룬다. 응용으로 강체의 운동과 small vibration을 다룬다.

Topics include the Newtonian mechanics, Lagrangian and Hamiltonian mechanics, canonical transformations, Hamilton–Jacobi theory, motion of rigid bodies and small oscillations.

3. 양자역학 (Quantum Mechanics)

양자역학의 기본이 되는 Hilbert 공간의 bra–vector, ket–vector, operator 등을 공부하고 Schroedinger picture, Heisenberg picture, interaction picture 등을 다룬다. Angular momentum, jj coupling, LS coupling 등도 다루고, tensor operator 및 Wigner–Eckart theorem을 공부한다.

Topics include fundamental concepts, Hilbert spaces and Dirac notations, general theory of quantum mechanics, including the Schrödinger, Heisenberg, and interaction pictures, the path integral formulation, nature of quantum measurement, addition of angular momenta.

4. 통계역학1 (Statistical Mechanics 1)

Dynamical system, Ergodic theory 등 통계역학의 기본 가정을 논하고 microcanonical ensemble의 평형 통계 역학의 기본 원리를 공부한다. Gas system 등에 고전 통계역학을 적용하는 예를 들고 양자통계역학을 도입하여 photon–photon gas, Bose gas, Fermi gas 등의 성질을 다룬다.

In this course, we will introduce the fundamental concepts and hypotheses in equilibrium statistical physics, such as Ergodic theory and ensemble theory. Numerous examples including the classical gas system will be discussed. We will also introduce some basic ideas and concepts in quantum statistical mechanics and study the physical properties of photon–photon gas, Bose gas, Fermi gas, etc.

5. 고체물리 (Solid State Physics)

Bravais lattices와 결정구조, x-ray 및 neutron scattering에 의한 결정 구조의 측정, photon과 lattice vibration, electron band theory 등도 다룬다.

The course provides an introduction to solid state physics, including the lattice structure, basic experimental methods, thermal properties, and basic band theory.

6. 기초양자장론 (Elementary quantum field theory)

스핀 0, 1/2, 1에 대한 상대론적 파동 방정식, Noether 정리, 정준 양자화, S-matrix, reduction formulas, 섭동이론과 Feynman diagram, 재규격화 등을 다룬다.

Topics include relativistic wave equations for spin-0, spin-1/2, and spin-1 particles, Noether's theorem, canonical quantizations, S-matrix, reduction formulas, perturbation theory and Feynman diagrams, introduction to renormalization.

7. 고급통계물리학 (Advanced Statistical Physics)

축적이론, 재규격화 군론 등의 기본 지식을 바탕으로 다양한 평형계 및 비평형계에서 일어나는 통계역학적 현상을 공부한다.

Based on the fundamental concepts in statistical physics such as scaling theory, renormalization group theory, we will introduce various methods to study the physical properties in equilibrium and non-equilibrium systems.

8. 양자정보 (Quantum Information)

양자정보의 이론과 응용을 배우는 과목이다. 양자비트, 양자알고리듬, 양자컴퓨터, 양자열역학 같은 양자정보의 이론을 익히고 그 응용과 관련한 최신 연구결과에 대해 검토한다.

This course provides students with an opportunity to learn quantum information theory and its application. It covers quantum bits, quantum algorithms, quantum computers, quantum thermodynamics and so on, and the recent trend of cutting edge research.

9. 첨단 데이터 컴퓨팅 물리학 (Advanced data computing in physics)

컴퓨터를 이용하여 물리학 문제를 해결하기 위한 다양한 주제를 다룬다.

시뮬레이션을 위한 각종 수치해석적 방법을 소개하고 실제 컴퓨터 프로그래밍을 통해 구현하며, 결과를 해석하기 위한 데이터 분석법을 다룬다. 인공지능을 이용하여 효과적으로 데이터를 선별하고 변수를 추출하며, 통계학을 기반으로 물리학적 가설을 검증한다. GPU를 비롯하여 병렬 및 분산 컴퓨팅 환경을 이용한 계산 속도 향상 방법을 적용한다.

This course covers various topics in the physics using the computer programs.

Numerical methods for the computer simulation of physics system and analysis techniques to understand data are introduced. For the data analysis techniques, ideas from the artificial intelligence will be used to select data and extract useful information. Hypothesis testing on the data based on statistics will be applied. Students can have exercises to write own computer programs which is based on parallel and distributed computing environment such as GPUs.

10. 고전전자기학2 (Classical Electromagnetism 2)

Radiation, plasma physics 입자의 상대론적 역학 등을 익히고, 입자의 충돌산란과 하전입자의 운동에 의한 radiation을 주로 다룬다.

Topics include electromagnetic waves, reflection and refraction, scattering and diffraction, electromagnetic radiation from oscillating dipoles, covariant formulation of Maxwell equations.

11. 일반상대론 (General Relativity)

특수상대론을 간단히 복습하고 등가원리를 공부한다. 미분기하학의 기초, 아인슈타인 방정식의 유도, 슈바르츠실드 블랙홀 해의 분석, 그리고 우주론의 기초를 다룬다.

We first review special relativity and discuss equivalence principle. Topics covered are basics of differential geometry, derivation of Einstein equation, Schwarzschild black hole solution, and introductory cosmology.

12. 끈이론1 (String Theory 1)

끈이론 특히 초끈이론을 다룬다. 고전적 끈이론부터 시작하여 양자화를 통해 끈이론이 중력을 포함한다는 것을 학습한다. 이상성이 없는 경우 다섯가지 끈이론이 가능하다는 것을 이해하고 기타 끈이론의 학습에 필요한 여러 가지 이론물리, 수학적 주제들을 다룬다.

We study string theory, especially superstring theory. We start from classical string theory and through quantization note that string theory contains gravity. We also note that there exist five anomaly-free string theories. We also study various topics in theoretical and mathematical physics needed in the study of string theory.

13. 끈이론2 (String Theory 2)

끈이론의 비설동적 성질을 이해하고 대응성을 11차원 M-이론으로 체계적으로 설명할 수 있음을 이해한다. 초중력 이론, D-브레인과 양-밀즈 이론, 행렬이론, AdS/CFT 대응성 등을 다룬다.

We study non-perturbative properties of string theory and understand that the string dualities are systematically explained in terms of eleven dimensional M-theory. We also study supergravity, D-branes and Yang-Mills theory, Matrix models, and AdS/CFT correspondence.

14. 통계역학2 (Statistical Mechanics 2)

상변화의 일반이론과 scaling theory, renormalization group theory 등을 익히고 Ising 모델 등의 상변화에 대한 특수한 모형도 공부한다. Superfluid He 등의 통계역학의 특별한 research topic도 익힌다. Boltzmann equation 등의 비평형 통계역학도 다룬다.

In this course we will introduce the general theory on phase transitions, scaling theory, and renormalization group theory. As a specific examples, phase transition in Ising model and special topics in statistical physics, such as superfluid He, will be discussed. We also cover the non-equilibrium statistical mechanics such as Boltzmann equation.

15. 통계열역학특론 (Statistical Thermodynamics)

평형 및 비평형계에 대한 기초 이론을 익힌다. 이를 기반으로 self-organization, diffusion-reaction dynamics 등에 대한 주제의 연구 논문을 이해할 수 있는 능력을 배양한다.

Based on the understanding of the equilibrium and non-equilibrium systems, we study the contemporary topics in statistical physics including self-organization, diffusion-reaction dynamics, etc.

16. 전자구조계산방법론1 (Computational Methodology for Electronic Structures 1)

물질의 전자구조를 이해하고 계산하기 위해 필요한 기본적인 방법론을 살펴본다. 실험의 측정을 통해서 관측하는 량과 ground state의 전자구조와 다양한 excitation 등과의 관계를 알아보고 실험과 이론의 연결을 이해하기 위한 내용이 진행된다.

This course introduces fundamental methodology of calculating the electronic structures of materials. It provides the relation between experimentally-observed quantities and electronic structures in ground-state or excitations to make a connection from theoretical study to experimental observations.

17. 전자구조계산방법론2 (Computational Methodology for Electronic Structures 2)

현재 가장 많이 사용되고 있는 pseudopotential method에 대해 배우고 이 방법을 토대로 전자구조를 계산할 수 있는 empirical pseudopotential 방법과 density functional theory에 대해서 살펴본다. Hamiltonian의 행렬표현을 위한 다양한 basis를 알아본다.

This course introduces fundamental methodology of calculating the electronic structures of materials. It provides a basic idea of pseudopotential method, which is applied into empirical pseudopotential method and into density functional theory. Students will also learn various basis sets for the matrix representation of Hamiltonian.

18. 고체물리특론1 (Advanced Solid State Physics 1)

군론, phase transition, glass transition, 초격자 등에 대한 이론과 X-ray, Raman scattering, photoluminescence 등에 관한 이론 및 실험 방법을 익히고 고체 물리학에 관한 연구 논문을 이해할 수 있는 능력을 배양하도록 한다.

Topics such as group theory, phase transition, glass transition, superlattice, X-ray scattering, Raman scattering, photoluminescence will be presented. Research articles of current hot topics will be selected for discussion.

19. 고체물리특론2 (Advanced Solid State Physics 2)

정사면체 결합 및 칼코게이나이트 비정질 반도체에서 원자구조, 화학결합, 무질서, 전자수송, 준아전 상태 등 비정질 반도체의 물성을 다룬다.

Characteristics of amorphous materials such as chemical bonding, atomic structure, disorder, electrical transport will be presented.

20. 고체물리특론3 (Advanced Solid State Physics 3)

무질서 세계에서의 이동도, 전자수송, 확산, percolation 등을 2차원 및 3차원계에 대하여 다룬다

Carrier mobility, diffusion, percolation in 2D and 3D of disordered materials will be covered.

21. 고체물리특론4 (Advanced Solid State Physics 4)

비정질 반도체 소자인 태양전지, 복사기 드럼, 영상감지소자, 박막트랜지스터 위치소자 등을 다룬다.

Devices of amorphous semiconductors such as solar cell, drum in a copy machine, image sensors, thin film transistors will be discussed.

22. 자성체물리학 (Magnetism and Magnetic Materials)

고전물리와 현대물리에서의 자기 모멘트의 개념을 다루고, 반자성, 상자성, 교환상호작용, 쌍극자상호작용, 강자성, 반강자성, 비등방성 등의 물질의 자성에 대한 이론을 익힌다.

The course provides an introduction to the magnetism research, including basic classical and quantum physics on magnetism, the origin of magnetism phenomena, and basic theories on the interactions of spins.

23. 응용물리특론1 (Advanced Applied Physics 1)

응용물리학 중에서 분광학적 분석 연구의 기본을 쌓기 위하여 빛의 성질과 물질의 광특성에 대한 지식을 습득하고 실제 측정 장비의 작동원리에 대하여 심도있게 학습한다.

In order to build his/her own foundation of spectroscopic analysis research in advanced applied physics, students acquire the knowledge of the optical properties of materials and characteristics of light and learn deeply about operational principles of equipment.

24. 응용물리특론2 (Advanced Applied Physics 2)

응용물리특론1에서 학습한 분광학적 분석 연구의 기본을 토대로, 측정 데이터에서 특정 결과를 분석해내는 능력을 길러 다양한 시료에 대해 다각적 분석이 가능한 연구원 배양을 목표로 한다.

Based on the principles of the spectroscopic-analysis research in advanced applied physics, this course is designed to raise the ability to obtain results from analyzed data and to make competent researchers who are able to handle various samples through multilateral point of views.

25. 타원편광해석법 (Ellipsometry Data Analysis)

타원편광분석의 기초 이론 및 실제 data 해석법을 익힌다. Complex refractive index, Kramers-Kronig relations, one-electron model 등의 이론을 다루며 기초적인 예시와 접목하여 물리적 이해를 높이며 타원계측분야에 대한 응용력을 배양한다.

This course is mainly for the graduate students of ellipsometry major. It covers basic concepts of polarized light and optical parameters and combines simple experimental examples, which increase the capability of ellipsometric analysis.

26. 타원해석법응용 (Advanced Analysis of Ellipsometry)

타원편광해석법의 심화과정으로 Mueller matrix, anisotropic material, critical point analysis 등을 다룬다. 이상적인 시료 분석을 넘어 고급 해석법을 이용한 다각적 접근을 통해 타원계측분야의 독립된 연구능력을 배양한다.

This course is intensive course of ellipsometry to develop operating skills of ellipsometer and analyzing optical properties of the obtained data. It covers Mueller matrix, anisotropic material, and inhomogeneous layer et cetera. Students will be able to have enhanced abilities on ellipsometric analysis of complex materials.

27. 전자물리학1 (Electronics 1)

물리학 실험을 수행하는데 필요한 전자 공학 지식을 회로 이론 중심으로 익히고 아날로그 전자공학의 기본 개념을 다룬다.

In this lecture, Students learn knowleges of electronic engineering, particulary on the theory of circuits. As understanding those, They also learn fundamental concepts of analog electronic engineering, needed to accomplish physical experiments.

28. 전자물리학2 (Electronics 2)

디지털 전자공학의 기본원리를 익히고 이를 이용한 응용물리학과 여러 가지 측정기기의 동작원리를 다룬다.

In this lecture, Students learn the fundamental priciles of digital electronic engineering.

As understanding those, They treat applied physics and operation principles of many messuring devices.

29. 나노물성학 (Nanomaterials)

나노 재료들에서 발현되는 다양한 물성들과 구조적 물성과의 상관관계를 논의한다.

This lecture introduces multiple physical properties on nano materials. Correlations of those physical properties are also introduced.

30. 반도체물리학 (Semiconductor Physics)

반도체의 원자구조, 밴드구조, 제작방법 및 물성에 관한 기초적인 사항들을 익하고, pn접합, 쇼트키 접합, MOS, MOSFET, 전계효과 트랜지스터의 제작방법 및 이러한 반도체에 관련된 연구를 할 수 있는 기초지식을 습득한다.

Learn the basic information about the atomic structure of the semiconductor, the band structure, manufacturing method, and physical properties, and then study about semiconductor fabrication methods for pn junction, Schottky junction, MOS, MOSFET, and a field effect transistor, as well as acquire the basic knowledge of a research of relating to these semiconductors.

31. 입자물리특론1 (Advanced Topics in Particle Physics 1)

이론 소립자물리학의 기본사항 및 중요한 연구성과를 다룬다. Charm 및 Top Quark 등의 새로운 flavour 와 color 개념이 소개된다. U(1) gauge 이론으로서 Maxwell 이론을 공부하고 non-abelian gauge 이론도 다룬다. Topological solution의 수학적 구조 및 Weinberg-Salam 모델도 익힌다.

We study from basics to advanced topics in theoretical particle physics. We study flavor physics and Yang-Mills theory. We also study topological solutions in quantum field theory, and Weinberg-Salam model.

32. 입자물리특론2 (Advanced Topics in Particle Physics 2)

Path integral 이론을 통한 gauge 이론의 양자화를 다룬후 vacuum 및 instanton이 소개된다. 또 renormalization group과 effective potential 방법론이 소개되고 QCD의 axial anomaly, asymptotic freedom 및 infrared problem을 다룬다.

We study quantization of gauge theories using path integral. We also discuss instantons, and study renormalization group and effective action. We also cover topics such as axial anomaly, asymptotic freedom and infrared problem in QCD.

33. 입자물리특수연구1 (Special Topics in Particle Physics 1)

입자 및 장 물리 분야의 고급 주제인 등각장론, 초대칭장론 등을 다룬다.

Topics include advanced materials of particle physics such as conformal field theory and supersymmetric field theory.

34. 입자물리특수연구1 (Special Topics in Particle Physics 2)

입자 및 장 물리 분야의 고급 주제인 휘어진 시공간 내에서의 장론, AdS/CFT 대응성 등을 다룬다.

Topics include advanced materials of particle physics such as quantum field theory in curved spacetime and AdS/CFT correspondence.

35,36. 양자정보과학1,2 (Quantum Information Science 1,2)

양자 알고리즘과 양자정보이론의 소개, Shor의 소인수분해 알고리즘 Grover의 검색 알고리즘을 포함하는 양자알고리즘, 양자오류정정에 대해서 학습한다.

Introduction to quantum algorithms and information theory, Quantum algorithms including Shor's factoring algorithm and Grover's search algorithm, Quantum error correction

37,38. 양자 컴퓨터 및 시뮬레이션1,2 (Quantum Computers and Simulations 1,2)

양자컴퓨터와 시뮬레이션의 원리와 적용에 대한 종합적인 연구를 체험한다.

Experience comprehensive research on the principles and applications of quantum computers and simulations.

39,40. 양자 센싱 및 측정1,2 (Quantum sensing and measurement 1,2)

양자 시스템을 이용한 정밀 센싱 및 측정을 위한 고급 기술 탐색을 이해한다.

Understand advanced technology exploration for precision sensing and measurement using quantum systems.

41,42. 양자통신및암호1,2 (Quantum Communication and Cryptography 1,2)

최신 양자 네트워크 기술을 포함하는 양자통신 및 양자 암호의 소개, 장거리의 큐비트를 전송하는 양자 중계기를 제작하는 기술과 양자 암호의 가장 알려진 응용 중의 하나인 양자키분배에 대해서 학습한다.

Introduction to quantum communication and quantum cryptography including the state of the art of quantum networks, techniques for building quantum repeaters that promise to deliver qubits over long distances, and one of the most famous applications of quantum cryptography, quantum key distribution.

43,44. 양자정보실험1,2 (Quantum Information Experiment 1,2)

양자 정보 현상을 조사하기 위한 실험을 설계하고 실제 실험 실습을 경험한다.

Experience designing and performing experiments to investigate quantum information phenomena.

45. 고급양자알고리즘 (Advanced Quantum Algorithms)

양자회로와 대수적 문제를 해결하는 양자 알고리즘, 양자 컴퓨터 능력의 한계, 양자 알고리즘의 최근 성과에 대해서 학습한다.

Quantum algorithms for simulating quantum mechanics, Limitations on the power of quantum computers, Selected recent developments in quantum algorithms.

46. 고급양자정보이론(Advanced Quantum Information Theory)

양자채널과 엔트로피 등 양자정보이론의 고급 이론과 결과에 대해서 학습한다.

Purifications and fidelity Naimark's theorem; characterizations of channels, Semidefinite programming, Semidefinite programs for fidelity and optimal measurements, Entropy, Continuity of von Neumann entropy; quantum relative entropy, Holevo's theorem and Nayak's bound, Separable mappings and the LOCC paradigm,

47, 48 양자정보연구과제설계1,2 (Quantum Information Research Project 1,2)

양자정보과학 관련 연구 프로젝트를 수행하고 그 연구 결과를 도출할 수 있도록 지도한다.

Conducting research projects related to quantum information science and deriving the research results.

49 양자정보연구인턴 (Quantum Information Research Intern)

양자정보과학 분야의 국내외 산학연 연구 그룹에 참여한다.

Participate in research projects to contribute to the development of quantum information science under the supervision of experts.

50, 51. 논문지도1,2 (Thesis Research 1,2)

연구 구논문을 체계적이고 논리적으로 쓸 수 있도록 지도한다.

Developing academic writing skill through logical thinking.

52. 석사논문연구1 (Masters Thesis Research 1)

본 교과목은 물리학 분야의 석사 학위 연구를 위한 기초를 확립하는 것을 목표로 하며, 학생은 지도교수와 함께 물리학적 연구주제를 선정하고 관련 물리이론 및 선행연구를 조사한다. 또한 실험물리·이론물리·계산물리 중 해당 분야의 기본 연구 기법을 습득하고, 물리학적 접근에 기반한 연구 계획을 수립한다.

This course provides the foundation for master's-level research in physics. Students work with their advisor to define a physics-related research topic, review relevant physical theories and prior studies, and acquire fundamental skills in experimental, theoretical, or computational physics. A physics-oriented research plan is developed as part of the course.

53. 석사논문연구2 (Masters Thesis Research 2)

본 교과목은 물리학 석사 논문 작성을 위한 본격적 연구 수행을 다루며, 학생은 실험물리, 이론물리, 계산물리 중 해당 분야에서 물리 데이터를 수집·분석하고 연구 결과를 물리학적 관점에서 정리한다. 이를 기반으로 논문 초안을 작성하며 학술적 발표 역량을 강화한다.

This course focuses on the full execution of the master's thesis research in physics. Students collect and analyze physical data through experimental, theoretical, or computational methods and organize their findings within a physics framework. The course includes developing a thesis draft and strengthening scientific presentation skills.

54. 박사논문연구1 (PhD Dissertation Research 1)

본 교과목은 물리학 분야 박사 연구의 초기 단계로, 학생은 연구 분야의 물리이론 및 최신 연구 동향을 심층 조사하고 주요 물리학적 문제를 정의한다. 이를 통해 독창적이고 물리학적으로 의미 있는 연구주제를 확립하며 장기 연구 방향을 설정한다.

This course covers the initial stage of doctoral-level physics research. Students conduct an in-depth review of relevant physical theories and current developments, identify key physics problems, and establish an original research topic that contributes meaningfully to the field. A long-term research plan is formulated.

55. 박사논문연구2 (PhD Dissertation Research 2)

본 교과목은 박사 연구 수행을 위한 물리학적 연구 기반을 구축하는 데 중점을 두며, 실험 장비 세팅, 물리 모델링, 계산물리 코드 개발 등 연구 체계를 마련한다. 학생은 예비 실험 또는 초기 시뮬레이션을 통해 물리적 접근의 타당성을 검증한다.

This course focuses on building the research framework required for physics dissertation work, including experimental setup, physical modeling, and computational physics code development. Students conduct preliminary experiments or simulations to validate the physical soundness of their research approach.

56. 박사논문연구3 (PhD Dissertation Research 3)

본 교과목은 박사 연구의 핵심 단계로, 학생은 물리학적 문제 해결을 위한 본격적인 실험·이론·계산 연구를 수행하고 주요 물리 데이터를 생산·분석한다. 이를 통해 국제 학술대회 발표 또는 저널 투고가 가능한 수준의 물리학 연구 성과를 도출한다.

This course represents the central phase of the physics dissertation research. Students carry out full-scale experimental, theoretical, or computational studies to generate and analyze significant physical data. The objective is to produce research results suitable for international conferences or peer-reviewed physics journals.

57. 박사논문연구4 (PhD Dissertation Research 4)

본 교과목은 물리학 박사 연구의 최종 단계로, 학생은 전체 연구 결과를 물리학적 맥락에서 종합하여 박사 학위 논문을 완성한다. 또한 연구 성과를 국제 물리학 저널에 투고하고 학위 논문 심사 및 최종 발표를 준비한다.

This course constitutes the final stage of doctoral research in physics. Students integrate all research findings within a physics framework to complete the dissertation, prepare manuscripts for submission to international physics journals, and complete the requirements for the dissertation defense.